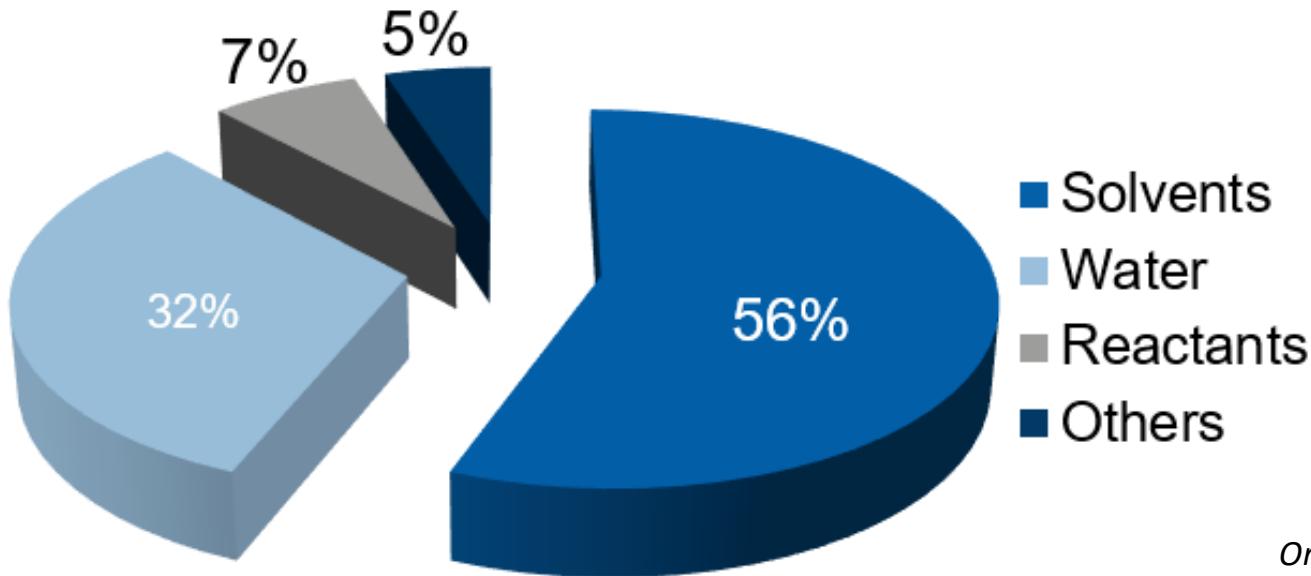


Sustainable drug development and manufacturing

Fabrice Gallou (fabrice.gallou@novartis.com)

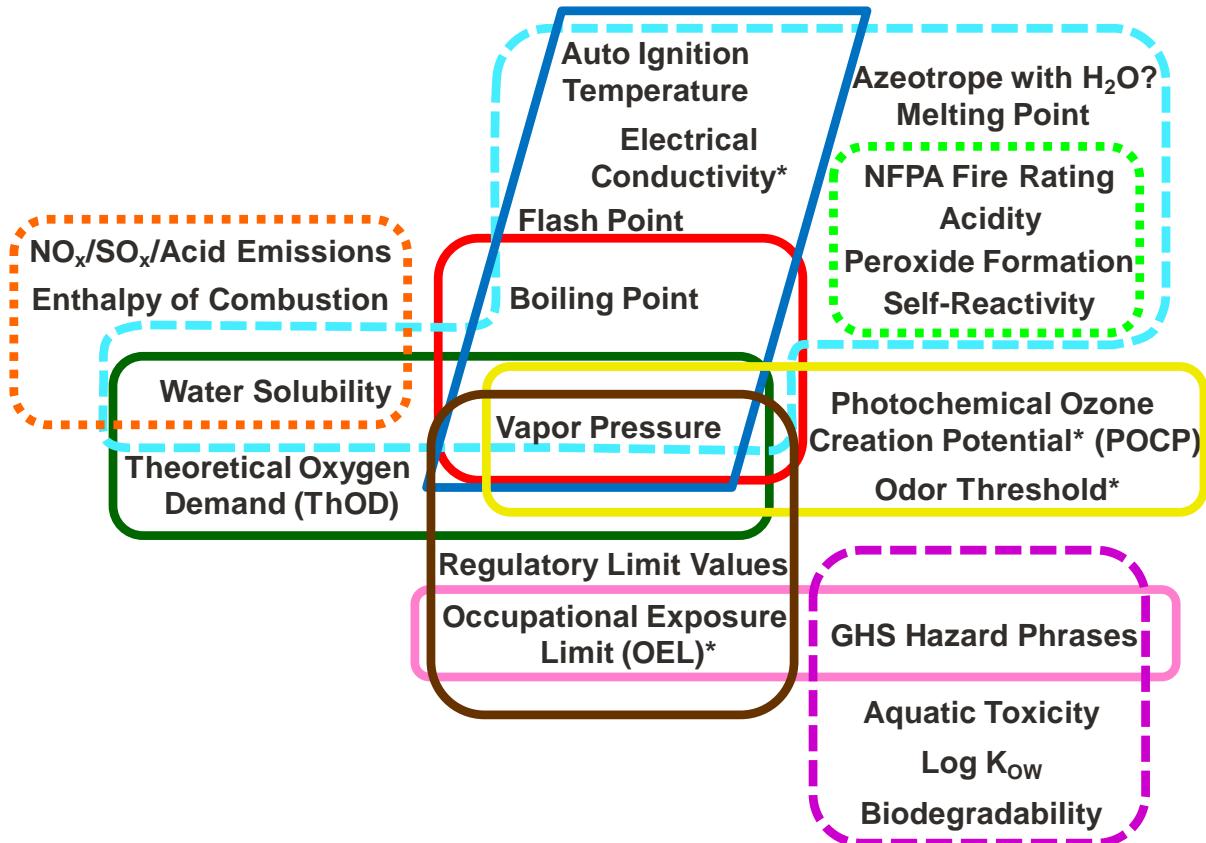

Chemical and Analytical Development
Novartis

II – Green Chemistry Tools

- Solvent Guide
- Reagent Guide

The importance of solvents and media

Mass allocation of a benchmark Pharma process



Org. Process Res. Dev. **2015**, *19*, 740.

Solvents (organic and aqueous) contribute to > 80% of overall mass intensity

Reprotoxic polar aprotic NMP, DMF, DMAc under severe pressure from regulatory agencies (e.g. REACH)

Solvent Selection Considerations

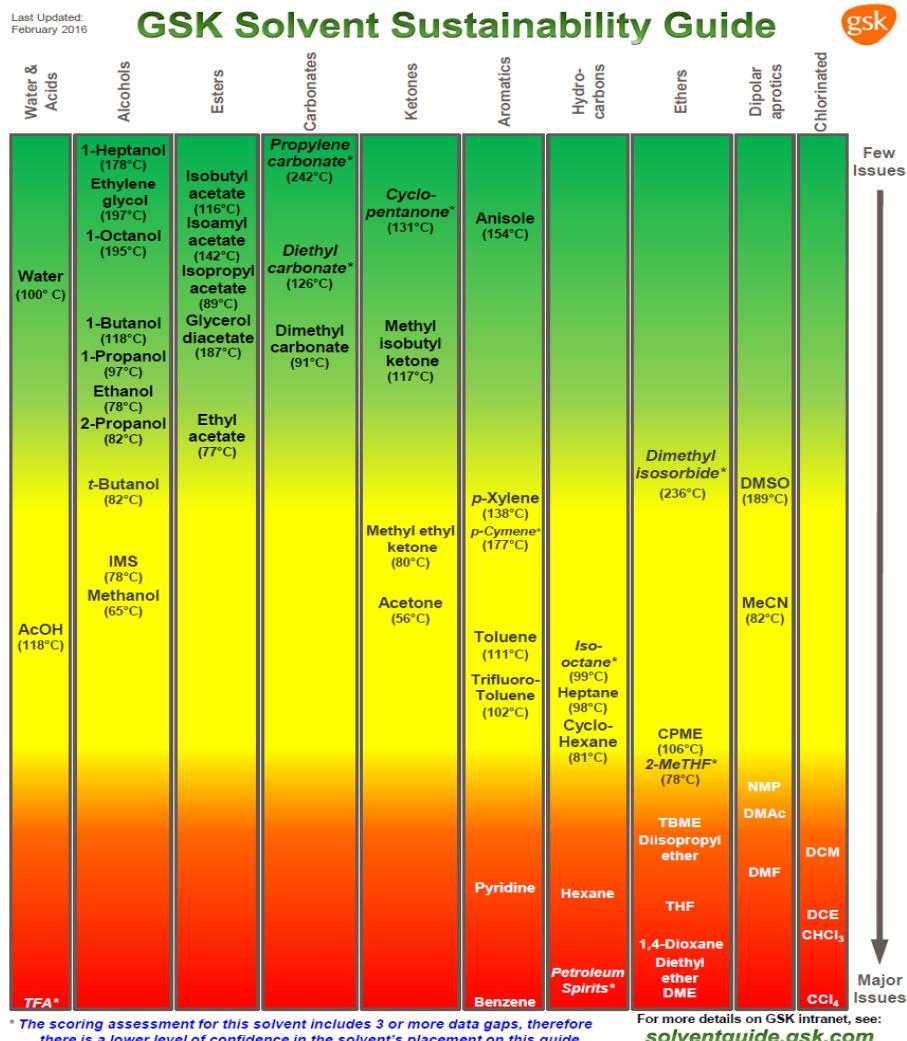
Key:

Waste:

- Incineration
- Recycling
- Biotreatment
- VOC Emissions

Environment:

- Aquatic Impact
- Air Impact


Health:

- Health Hazards
- Exposure

Safety:

- Flammability & Explosion
- Reactivity

Solvent Selection Guides

New format emphasizes spectrum of green chemistry assessments

Ease of comparison both within a solvent class and across multiple classes

Highlight those solvents with significant data gaps

Reverse side of guide provides more detailed scoring information

GSK Solvent Sustainability

For more details, at GSK internally, see:
solventguide.gsk.com

Column Headings Colour Key

Yellow	Waste
Green	Environment
Blue	Human Health
Magenta	Safety

Composite Colour Key

Green	Few Known Issues
Yellow	Some Known Issues
Red	Major Known Issues

*The scoring assessment for this solvent includes 3 or more data gaps, therefore there is a lower level of confidence in the solvent's placement on this guide.

*A blank value for Life Cycle Analysis (LCA) indicates that this data is currently not available.

The composite colour represents an overall categorization of the holistic sustainability of a solvent, taking all category scores into consideration.

Last Updated: February 3, 2016

Classification	Solvent Name	CAS Number	Composite Colour†	Boiling Point (°C)	Incineration	Recycling	Biotreatment	VOC Emissions	Aquatic Impact	Air Impact	Health Hazard	Exposure potential	Flammability & Explosivity	Reactivity & Stability	Life Cycle Analysis*
Water & Acids	Water	7732-18-5	Green	100	3	2	4	6	10	8	10	9	7	10	10
	Acetic Acid	64-19-7	Yellow	118	3	5	4	7	8	4	7	5	8	6	8
	Trifluoroacetic acid*	76-05-1	Yellow	72	1	5	2	4	4	4	4	3	7	6	
Alcohols	1-Heptanol	111-70-6	Red	178	9	8	10	9	8	4	10	7	9	10	
	Ethylene glycol	107-21-1	Red	197	4	5	5	10	10	8	7	10	10	10	9
	1-Octanol	111-87-5	Red	195	9	7	8	10	5	4	7	10	9	10	
	1-Butanol	71-36-3	Red	118	6	7	5	8	9	3	7	7	8	9	5
	1-Propanol	71-23-8	Red	97	5	3	3	6	10	4	10	7	8	10	7
	Ethanol	64-17-5	Red	78	5	5	3	4	9	5	10	8	6	10	
	2-Propanol	67-63-0	Red	82	5	5	3	5	8	7	10	6	6	8	4
	t-Butanol	75-65-0	Red	82	5	5	3	5	9	7	7	5	6	10	8
Esters	IMs (ethanol, denatured)	64-17-5	Red	78	5	5	3	5	9	5	4	7	6	10	
	Methanol	67-56-1	Red	65	4	7	3	3	10	7	4	6	5	10	9
	Isobutyl acetate	110-19-0	Red	116	7	9	8	6	9	6	10	6	8	10	
	Isoamyl acetate	123-92-2	Red	142	9	9	8	8	4	6	7	8	8	10	
	Isopropyl acetate	108-21-4	Red	89	6	7	5	5	9	5	10	6	6	10	7
	Glycerol diacetate	111-55-7	Red	187	5	6	6	10	6	8	4	8	10	10	
	Ethyl acetate	141-78-6	Red	77	5	6	5	4	9	5	10	7	5	10	6
	Propylene carbonate*	108-32-7	Red	242	4	5	6	10	10	10	10	10	10	10	
Carbonates	Diethyl carbonate*	105-58-8	Red	126	7	9	9	7	9	8	4	5	8	10	
	Dimethyl carbonate	616-38-6	Red	91	4	3	5	5	9	7	10	6	6	10	8
	Cyclopentanone*	120-92-3	Red	131	8	9	6	7	10	5	7	6	8	10	6
	Methylisobutyl ketone	108-10-1	Red	117	7	8	5	7	9	3	7	6	7	9	2
	Methylethyl ketone	78-93-3	Red	80	5	5	3	4	8	4	10	6	5	9	3
	Acetone	67-64-1	Red	56	5	6	2	2	10	6	10	6	4	9	7
	Anisole	100-66-3	Red	154	8	8	8	8	7	6	7	8	7	9	5
	p-Xylene	106-42-3	Red	138	10	9	6	7	5	2	7	7	5	10	7
Aromatics	p-Cymene*	99-87-6	Red	177	10	8	7	9	3	2	10	6	6	9	
	Toluene	108-88-3	Red	111	10	7	6	7	7	2	7	6	5	10	7
	Trifluorotoluene	98-08-8	Red	102	4	4	5	6	3	8	10	4	4	10	
	Pyridine	110-86-1	Red	115	3	6	2	7	7	3	4	4	8	9	2
	Benzene	71-43-2	Red	80	9	6	6	4	7	5	1	1	3	10	7
	Isooctane*	540-84-1	Red	99	10	4	5	6	2	5	10	7	3	10	7
	Heptane	142-82-5	Red	98	10	4	5	6	3	5	10	6	3	10	7
	Cyclohexane	110-82-7	Red	81	10	6	5	4	3	5	10	6	2	10	7
Hydrocarbons	Hexane	110-54-3	Red	69	10	8	4	3	3	5	7	4	2	10	7
	Petroleum spirits*	8032-32-4	Red	55	6	9	4	2	5	5	1	6	2	10	7
	Dimethyl isosorbide*	5306-85-4	Red	236	3	4	5	10	9	6	4	9	9	8	
	Cyclopentyl methyl ether	5614-37-9	Red	106	8	4	5	6	4	3	4	4	6	9	4
	2-Methyltetrahydrofuran*	96-47-9	Red	78	6	5	3	4	7	4	4	3	4	6	4
	t-Butylmethyl ether	1634-04-4	Red	55	7	8	4	2	7	5	7	4	3	9	8
	Diisopropyl ether	108-20-3	Red	68	9	7	6	3	5	4	10	6	4	3	9
	Tetrahydrofuran	109-99-9	Red	65	5	5	2	3	9	3	7	5	4	6	4
Ethers	1,4-Dioxane	123-91-1	Red	102	4	1	3	6	8	4	4	3	4	6	6
	Diethyl ether	60-29-7	Red	35	7	7	3	1	5	3	10	4	2	6	6
	1,2-Dimethoxethane	110-71-4	Red	85	4	4	3	5	8	7	1	4	4	6	7
	Dimethyl sulfoxide	67-68-5	Red	189	3	4	4	9	8	6	7	9	5	6	
	Acetonitrile	75-05-8	Red	82	3	5	1	4	10	8	7	5	6	10	4
	N-Methyl pyrrolidone	872-50-4	Red	202	3	4	3	10	10	6	1	9	9	9	4
	N,N-Dimethyl acetamide	127-19-5	Red	165	3	6	3	9	10	6	1	7	9	9	2
	N,N-Dimethyl formamide	68-12-2	Red	153	3	6	3	8	10	4	1	6	9	9	7
Dipolar Aprotics	Dichloromethane	75-09-2	Red	40	2	10	4	1	8	6	7	4	4	10	7
	1,2-Dichloroethane	107-06-2	Red	84	2	7	5	5	9	7	1	2	5	10	7
	Chloroform	67-66-3	Red	61	3	9	5	3	7	5	4	1	5	10	6
	Carbon tetrachloride	56-23-5	Red	77	3	7	5	4	4	1	4	1	4	10	7

ACS GCI Pharmaceutical Roundtable Solvent Selection Guide
Version 2.0 Issued April 1, 2011
www.acs.org/gcipharmaroundtable

ACS Solvent Selection Guide

ACS GCI Pharmaceutical Roundtable guide available free of charge

Considers safety, health and environmental impact of solvents

www.acs.org/gcipharmaroundtable

Solvent Class	Solvent Name	CAS Number	Substance Information			Scoring Information		
			Safety	Health	Env (Air)	Env (Water)	Env (Waste)	
Acid	ACETIC ACID	64-19-7	3	5	5	3	5	6
Acid	ACETIC ANHYDRIDE	108-24-7	3	6	6	2	7	
Acid	FORMIC ACID	64-18-6	2	6	5	4	7	
Acid	METHANE SULPHONIC ACID	75-75-2			6	6	10	
Acid	PROPIONIC ACID	79-09-4	2	5	6	4	6	
Alcohol	1-BUTANOL	71-36-3	3	5	5	5	5	3
Alcohol	1-PROPANOL	71-23-8	4	4	6	2	6	
Alcohol	2-BUTANOL	78-92-2	4	5	6	3	5	
Alcohol	2-METHOXYETHANOL	109-86-4	4	9	5	3	7	
Alcohol	BENZYL ALCOHOL	100-51-6	4	3	4	2	4	
Alcohol	ETHANOL	64-17-5	4	3	5	1	6	
Alcohol	ETHYLENE GLYCOL	107-21-1	3	3	5	1	7	
Alcohol	ISOAMYL ALCOHOL	123-51-3	3	4	5	3	4	
Alcohol	ISOBUTANOL	78-83-1	3	5	4	3	3	
Alcohol	ISOPROPYL ALCOHOL (IPA)	67-63-0	5	5	6	2	6	
Alcohol	METHANOL	67-56-1	3	5	6	3	5	
Alcohol	T-BUTANOL	75-65-0	3	5	7	2	6	
Aromatic	BENZENE	71-43-2	5	10	6	6	2	
Aromatic	TOLUENE	108-88-3	5	7	6	6	2	
Base	PYRIDINE	110-86-1	3	6	7	7	5	
Base	TRIETHYLAMINE (TEA)	121-44-8	4	7	5	7	4	
Dipolar aprotic	ACETONITRILE	75-05-8	3	5	6	4	5	
Dipolar aprotic	DIMETHYL ACETAMIDE (DMAC)	127-19-5	2	7	3	7	7	
Dipolar aprotic	DIMETHYL SULFOXIDE (DMSO)	67-68-5	3	4	4	4	5	
Dipolar aprotic	N,N-DIMETHYLFORMAMIDE (DMF)	68-12-2	3	7	3	2	7	
Dipolar aprotic	N-METHYL-2-PYRROLIDONE (NMP)	872-50-4	3	6	6	2	7	
Dipolar aprotic	DIMETHYLMIDAZOLIDINONE	80-73-9	3					
Dipolar aprotic	N-ETHYL-PYRROLIDONE (NEP)	2687-91-4						
Dipolar aprotic	SULFOLANE	126-33-0	2	3		5	8	
Dipolar aprotic	TETRAMETHYLUREA	632-22-4	3					
Ester	DIMETHYL CARBONATE	616-38-5						5
Ester	ETHYL ACETATE (ETOAC)	141-78-6	5	4	6	4	4	
Ester	ISOBUTYL ACETATE (IBUOAC)	110-19-0	5	3	5	2	2	
Ester	ISOPROPYL ACETATE (IPAC)	108-21-4	3	4	6	3	3	
Ester	METHYL ACETATE	79-20-9	3	5	6	3	5	
Ester	METHYL FORMATE	107-31-3	5	7	7		6	
Ester	N-BUTYL ACETATE	123-86-4	4	4	6	3	4	
Ether	1,2-DIMETHOXYETHANE (DME)	110-71-4		9		3	6	
Ether	1,4-DIOXANE	123-91-1	6	7	4	4	6	
Ether	2-METHOXYETHYL ETHER (DIGLYME)	111-96-6		8		3	7	
Ether	ANISOLE	100-66-3	5	4		3	4	
Ether	ETHYL ETHER	60-29-7	9	5	7	4	4	
Ether	METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	8	5	8	5	2	
Ether	TETRAHYDROFURAN (THF)	109-99-9	5	6	5	4	5	
Ether	2-METHYL TETRAHYDROFURAN	96-47-9	5	6			4	
Ether	CYCLOPENTYL METHYL ETHER (CPME)	5614-37-9	6			5	3	
Halogenated	1,2-DICHLOROETHANE (DCE)	107-06-2	4	9	6	6	6	
Halogenated	CHLOROBENZENE	108-80-7	3	5	5	5	6	
Halogenated	CHLOROFORM	67-63-3	2	9	7	7	6	
Halogenated	DICHLOROMETHANE	75-09-2	2	7	9	5	7	
Halogenated	CARBON TETRACHLORIDE	56-23-5	3	8	8	5	7	
Halogenated	TRIFLUOROTOLUENE	98-08-8		6	7	7	6	
Hydrocarbon	CYCLOHEXANE	110-82-7	6	5	4	7	2	
Hydrocarbon	METHYL CYCLOHEXANE	108-57-2	6	4	4		2	
Hydrocarbon	N-HEPTANE	142-82-5	6	4	4	7	2	
Hydrocarbon	N-HEXANE	110-54-3	6	7	5	8	1	
Hydrocarbon	XYLENE (MIXED ISOMERS)	1330-20-7	4	4	4	7	3	
Hydrocarbon	ISOOCTANE	540-84-1	5	4	4		2	
Ketone	ACETONE	67-64-1	4	4	7	1	5	
Ketone	AMYL ACETATE	628-63-7	3	3	5	5	4	
Ketone	CYCLOHEXANONE	108-94-1	4	4	6	3	5	
Ketone	METHYL ETHYL KETONE (MEK)	78-93-3	5	4	7	2	5	
Ketone	METHYL ISOBUTYL KETONE (MIBK)	108-10-1	5	6	6	4	2	

Note: A blank cell indicates that data are missing so a score could not be calculated.

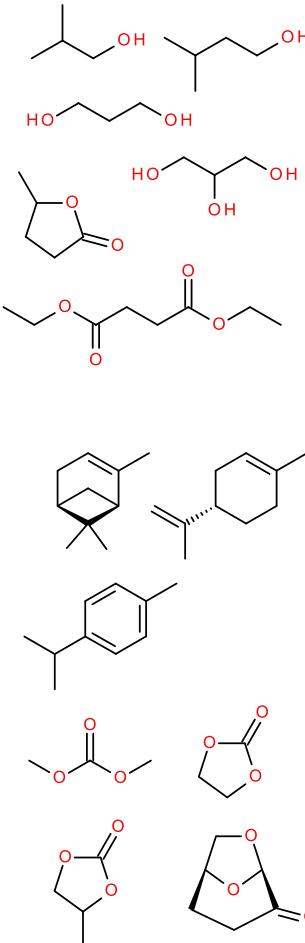
Page 2 of 2

This version of the ACS GCI Pharmaceutical Roundtable Solvent Selection Guide reflects ongoing evaluation of publicly available information by the ACS GCI Pharmaceutical Roundtable. Comments may be sent to gci@acs.org. No warranty is made and all warranties are expressly disclaimed. The guide has been developed considering safety, health, environment aspects of solvent selection. Other aspects may need to be considered in process design. The ACS GCI Pharmaceutical Roundtable does not accept responsibility for any errors or omissions. Copyright 2011 American Chemical Society (Green Chemistry Institute®) All rights reserved. Do not copy without written authorization from ACS. Reprints available.

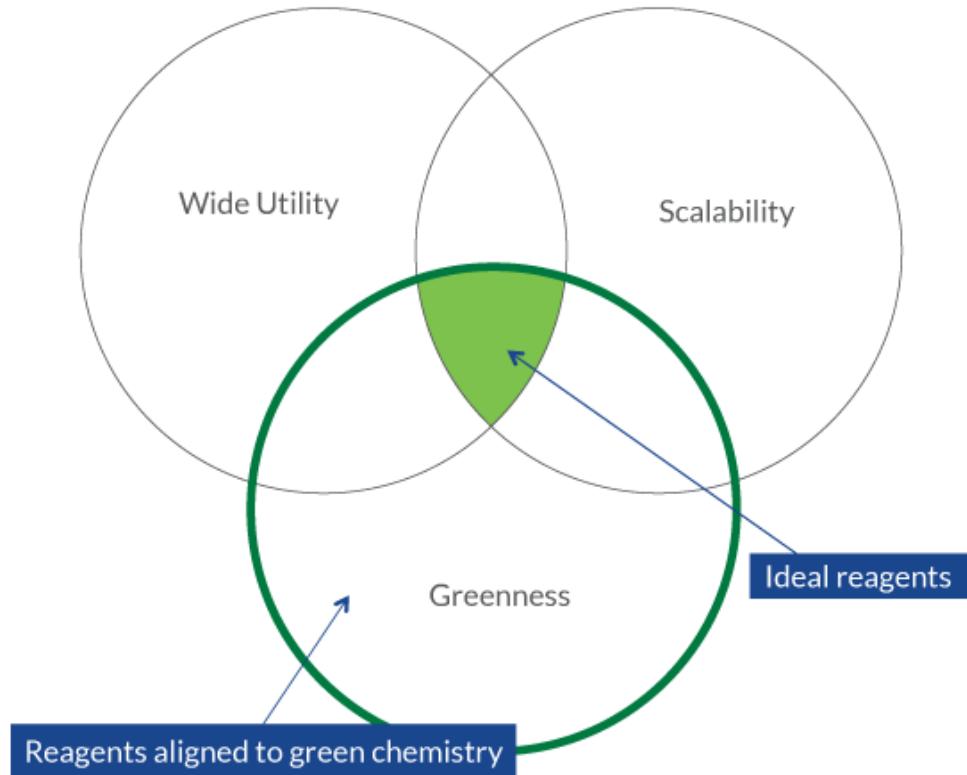
Comparison of Different Guides

Ranking	Solvents
Recommended	Water, EtOH, iPrOH, nBuOH, AcOEt, AcO <i>i</i> Pr, AcOnBu, PhOMe, sulfolane
Recommended or Problematic ?	MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, cyclohexanone, AcOMe, AcOH, Ac ₂ O
Problematic	Me-THF, heptane, Me-cyclohexane, toluene, xylene, chlorobenzene, acetonitrile, DMPU, DMSO
Problematic or Hazardous ?	THF, MTBE, cyclohexane, DCM, formic acid, pyridine
Hazardous	iPr ₂ O, dioxane, DME, pentane, hexane, DMF, DMA, NMP, TEA, methoxyethanol
Highly hazardous	Et ₂ O, Benzene, CCl ₄ , chloroform, DCE, nitromethane

67% convergence (AZ, ACS GCI, GSK, Pfizer, Sanofi)


The divergences reflect the different weighing of criteria

D. Prat, J. Hayler, A. Wells, *Green Chem.* 2014, 16, 4546

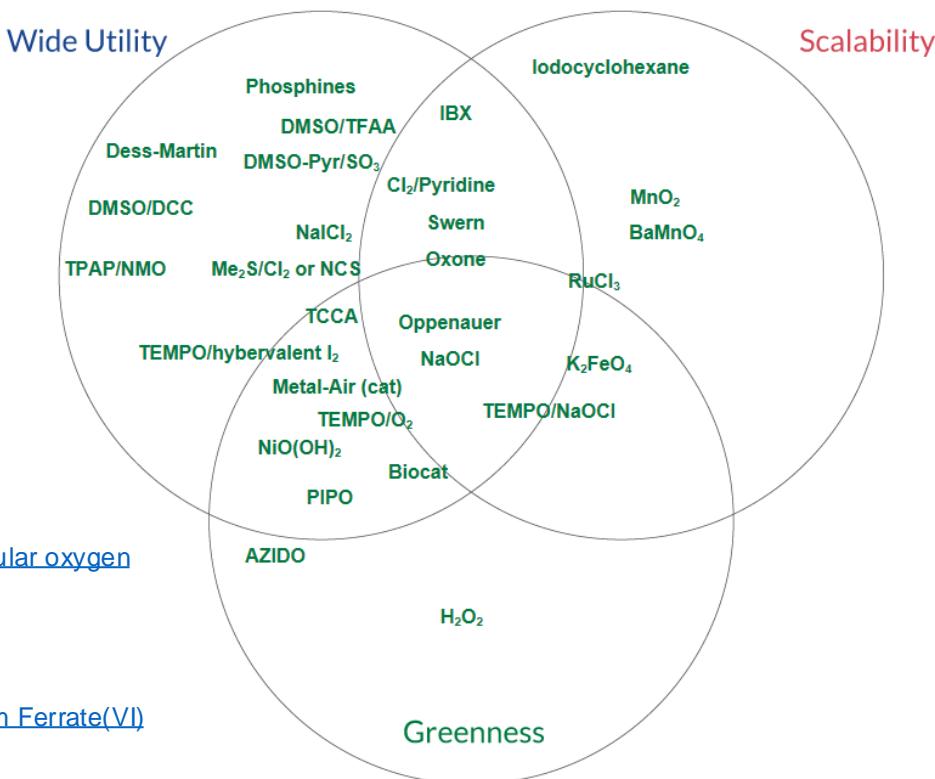

Chem21 Solvent Guide

Ranking of bio-derived solvents

Family	Solvent	BP (°C)	FP (°C)	Worst H3xx	H4xx	Safety score [#]	Health score	Env. score	Ranking by default
Alcohols	<i>i</i> -Butanol	107	28	H318	none	3	4	3	Recommended
	<i>i</i> -Amyl alcohol	131	43	H315	none	3	2	3	Recommended
	1, 3-Propane diol	214	>100	none	none	1	1	7	Problematic
	Glycerol	290	177	none	none	1	1	7	Problematic
Esters	<i>i</i> -Butyl acetate	115	22	H336	none	4	2	3	Recommended
	<i>i</i> -Amyl acetate	142	25	none	none	3	1	5	Recommended
	Glycol diacetate	186	82	none	none	1	1	5	Recommended
	γ-Valerolactone	207	100	n.a.	n.a.	1	5	7	Problematic
	Diethyl succinate	218	91	n.a.	n.a.	1	5	7	Problematic
Hydrocarbons	D-Limonene	175	49	H304	H400	4	2	7	Problematic
	Turpentine	166	38	H302	H411	4	2	7	Problematic
	p-Cymene	177	27	n.a.	n.a.	4	5	5	Problematic
Aprotic polar	Dimethyl carbonate	90	16	none	none	4	1	3	Recommended
	Ethylene carbonate	248	143	H302	none	1	2	7	Problematic
	Propylene carbonate	242	132	H319	none	1	2	7	Problematic
	Cyrene	203	61	H319	n.a.	1	2	7	Problematic
Miscellaneous	Ethyl lactate	155	47	H318	none	3	4	5	Problematic
	Lactic acid	230	113	H318	none	1	4	7	Problematic
	TH-Furfuryl alcohol	178	75	H360	none	1	9	5	Hazardous

Reagent Guides

- Judicious reagent selection for a given chemical transformation represents a key decision, which is influenced by a variety of different factors depending on what stage it is made in the drug development process.
- From a Green Chemistry perspective, it is important to introduce the greenest possible reagent as early as possible in the discovery/development process with the assessment of greenness taking into account factors including worker safety, ecotoxicity and atom economy.


Reagent Guides

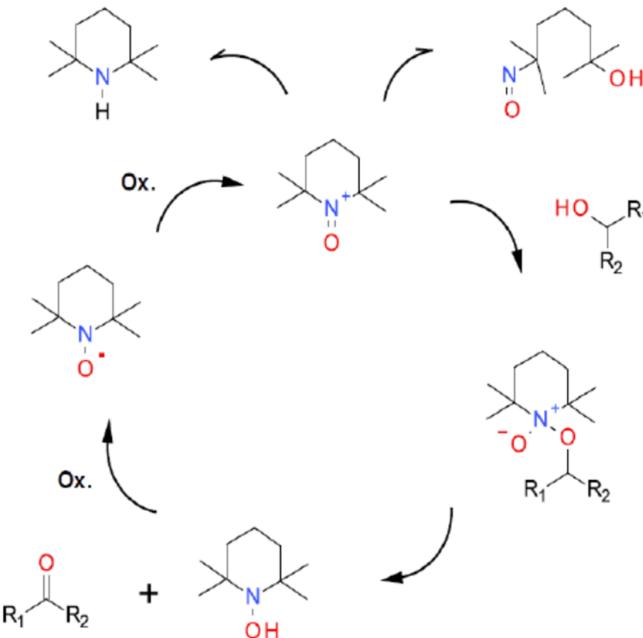
List of Reagents

Full Review

- [NiO₂ oxidation of alcohols](#)
- [MnO₂ oxidations in organic chemistry](#)
- [Hypervalent Iodine reagents – general overview](#)
- [IBX 2-Iodoxybenzenesulfonic Acid](#)
- [Dess Martin Periodate](#)
- [NaICl₂ A simple system for the oxidation of alcohols](#)
- [PDC Pyridium dichromate oxidations](#)
- [PCC Review on Cr\(VI\) oxidation](#)
- [Oppenauer oxidation: An Integrated Approach](#)
- [DMSO –Oxalyl Chloride, Swern oxidation](#)
- [DMSO/DCC Pfitzner-Moffat \(also TFAA activation\)](#)
- [DMSO – Pyridine-SO₃ \(Parikh-Doering\)](#)
- [DMSO activation in Pseudo-Swern reaction](#)
- [Me₂S/NCS Corey - Kim oxidation](#)
- [NaOCl bleach oxidation](#)
- [TCA Trichloroisocyanuric Acid: A Safe and Efficient Oxidant](#)
- [TPAP/NMO \(tetrapropylammonium perruthenate\)](#)
- [TEMPO \(General overview\)](#)
- [TEMPO-Bleach](#)
- [TEMPO –air –catalyst](#)
- [TEMPO-hypervalent iodine](#)
- [Air-Metal catalyst transition-metal catalyzed reactions using molecular oxygen](#)
- [Activated H₂O₂ hydrogen peroxide](#)
- [Biocatalysis biocatalytic methods for oxidation](#)
- [Light touch overview](#)
- [BaMnO₄ oxidation of primary and secondary alcohols](#)
- [Potassium Ferrate A Novel Oxidizing Reagent Based on Potassium Ferrate\(VI\)](#)
- [Oxidation with Chlorine /Pyridine complexes](#)
- [RuCl₃](#)
- [PIPO- Polymer immobilised TEMPO](#)
- [Ce Cerium\(IV\) ammonium nitrate](#)
- [Aqueous oxone](#)
- [AZIDO \(TEMPO variants\)](#)

Venn Diagram

Oxidation to aldehydes and keto


Reagent Guides

TEMPO-Bleach oxidation Mechanism + Description

As previously for TEMPO NaOCl is often used as a co-oxidant which generates NaCl as a by-product. NaBr or borates are often added as a promoter.

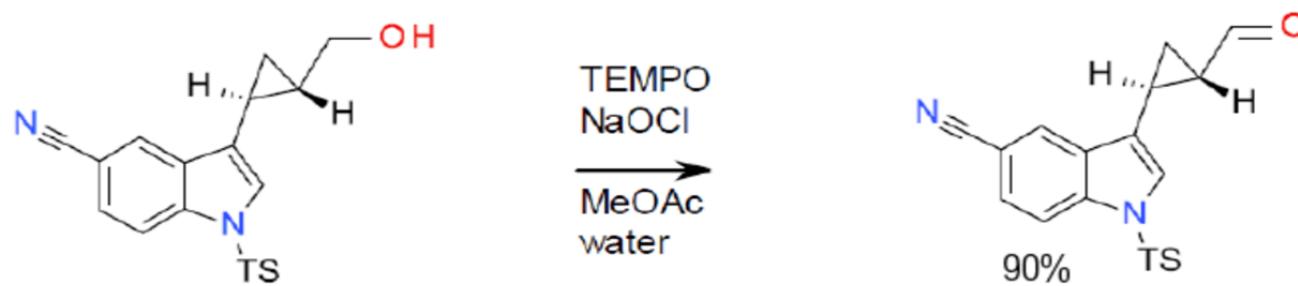
General Comments

A common terminal oxidant is bleach (NaOCl) which is often employed with a Bromide or borate co-catalyst. Reactions in water or bi-phasic reactions are often helped by the addition of a phase transfer catalyst

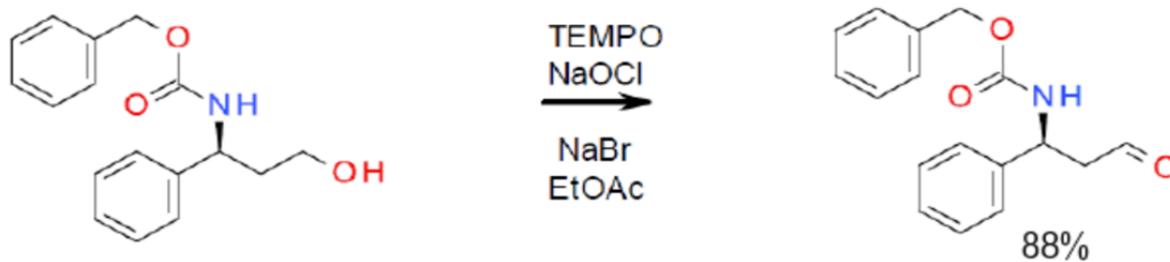
Key References

[Org. Process Res. Dev., 2005, 9 \(5\), 577–582](#) - Production of Aldehydes by Continuous Bleach Oxidation of Alcohols
Catalyzed by 4-Hydroxy-TEMPO

[Org. Process Res. Dev., 2008, 12 \(2\), 322–338](#) - Discussion of optimisation to prevent racemisation (50 L scale)

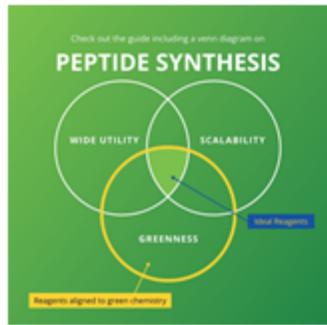

[Org. Process Res. Dev., 2010, 14 \(2\), 441–458](#) - DOE and robustness studies on TEMPO stage statin ox'd'n (2000 L scale)

[Org. Process Res. Dev., 2010, 14 \(1\), 142–151](#) - Use of NaI to prevent chlorination of heteroaromatic (50 L scale)


Reagent Guides

reagentguides.com

Relevant Scale up examples



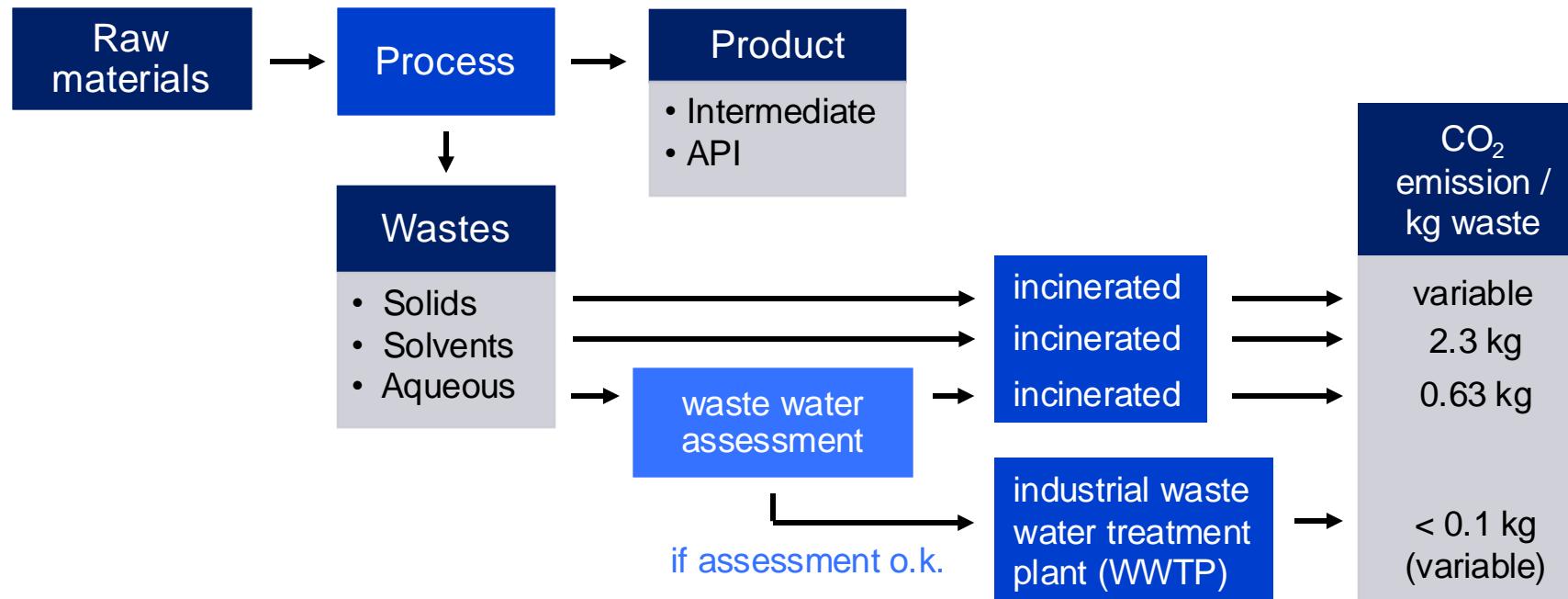
Org. Process Res. Dev., 2008, 12 (2), 168–177 – 100 L oxd'n in MeOAc or THF

Org. Process Res. Dev., 2008, 12 (6), 1104–1113 – 2000 L prep of Maraviroc intermediate

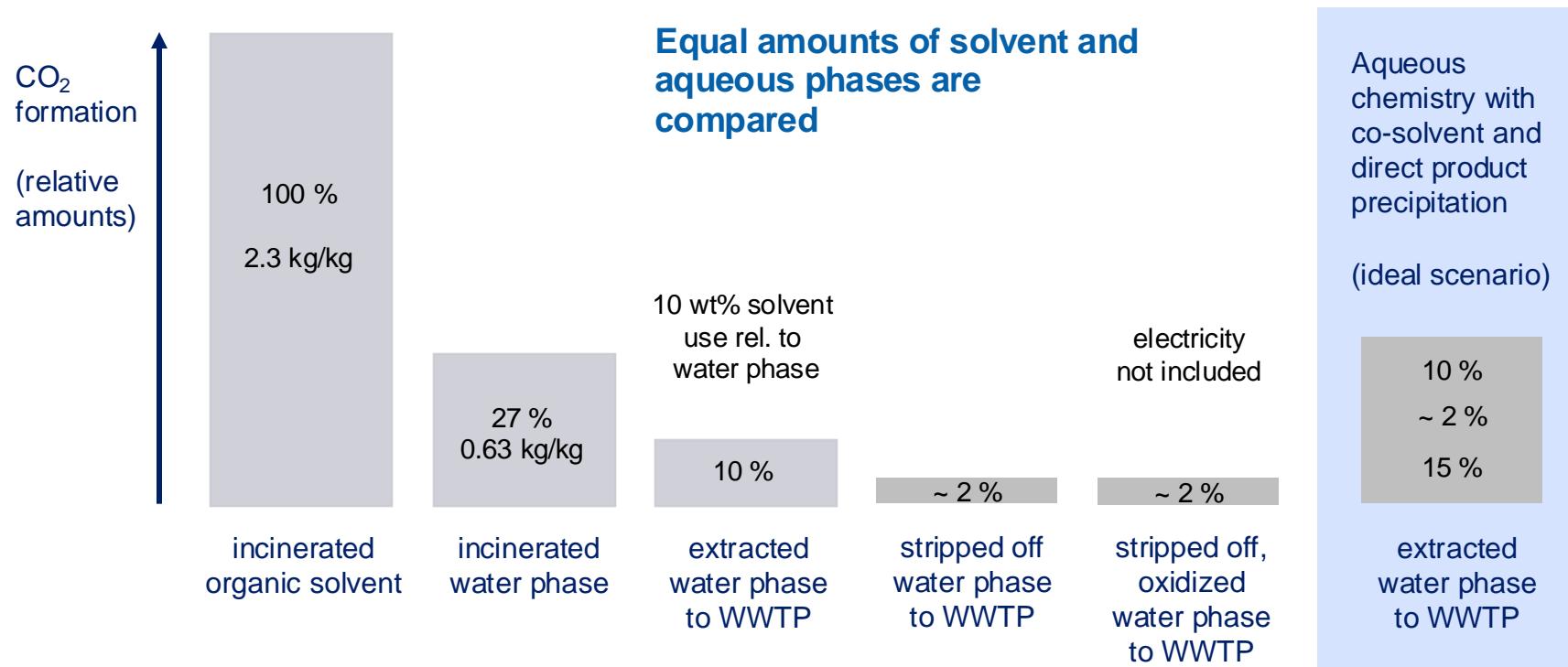
Reagent Guides

ACS Green Chemistry Institute on LinkedIn: The ACS GCIPR has recently published a new reagent guide on peptide...

The ACS GCIPR has recently published a new reagent guide on peptide synthesis. The reagent guides use Venn diagrams to provide an easy comparison of the...

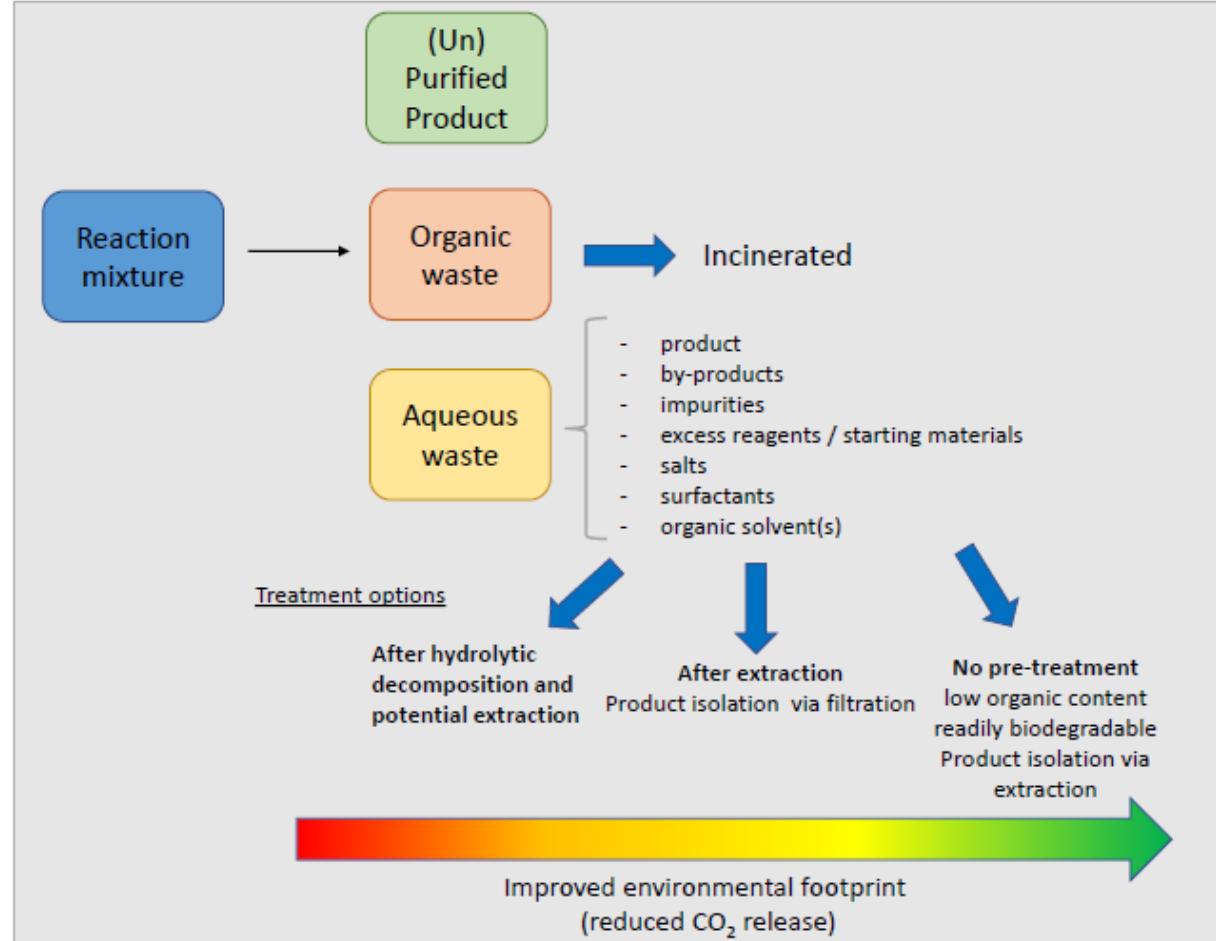

www.linkedin.com

[Peptide Synthesis – WordPress \(acsgcipr.org\)](http://Peptide Synthesis – WordPress (acsgcipr.org))


A screenshot of the "Peptide Synthesis" page from the acsgcipr.org website. The page features a Venn diagram comparing "Wide Utility", "Scalability", and "Greenness" in peptide synthesis. The diagram shows various synthesis methods in the intersections: SPPS in Continuous mode, Bond formation/deprotection in CMR solvents, Hydrophobic/hydrophilic tagging, Recombinant technologies, Enzyme-catalysed ligation, Membrane enhanced peptide synthesis, and Affinity tagged Purification. A note at the top of the page states: "The inclusion of an article in this document does not give any indication of safety or operability. Anyone wishing to use any reaction or reagent must consult and follow their internal chemical safety and hazard procedures and local laws regarding handling chemicals". The sidebar on the right lists "Reagent Guides" such as Peptide Synthesis, List of Reagents, Solvents, Chemistry in Water, Molecular Solvents - Replacements for DMF, DMAC, NMP, Deprotection, Cleavage from Resin, Peptide Isolation, Recombinant Methods/ Biocatalysis/ Enzymic Peptide Ligation, Flow Processes/ Continuous Processing, Solid State Chemistry - Ball Milling, Twin Screw Mixing, Reactors, Microwaves, More Efficient LPPS, and Downstream Processing/ Purification/ Isolation of Peptides.

III. Waste water from chemical processes

Waste streams from conventional chemical processes



CO₂ formation from liquid waste disposals

Waste streams from conventional chemical processes

Why water-based chemistry can be disruptive

Substituting solvents by water

Water as (reaction) solvent relates to Green Chemistry Principles

- 3. Less Hazardous Synthesis
- 5. Benign Solvents & Auxiliaries
- 12. Inherently Benign Chemistry for Accident Prevention

Substituting solvents by water

Water as (reaction) solvent relates to Green Chemistry Principles

3. Less Hazardous Synthesis

5. Benign Solvents & Auxiliaries

12. Inherently Benign Chemistry for Accident Prevention

“Performing a reaction in water is green because no/little solvent is used”

“Biocatalysis is green because it uses water as solvent”

Substituting solvents by water

Water as (reaction) solvent relates to Green Chemistry Principles

3. Less Hazardous Synthesis

5. Benign Solvents & Auxiliaries

12. Inherently Benign Chemistry for Accident Prevention

“Performing a reaction in water is green because no/little solvent is used”

“Biocatalysis is green because it uses water as solvent”

This may be true ... if the spent water is **acceptable for the WWTP**, and not incinerated.

Residues of	Reactants Reagents Product Co-solvent Solvent from work-up By-products	<ul style="list-style-type: none">need to be degradable in the WWTP (= not persistent)the remains after the WWTP need to be unproblematic in the environment, particularly<ul style="list-style-type: none">of low toxicity towards several organismsdo not promote algae growth
-------------	---	---

Biodegradability of organic compounds

Breakdown of organic matter by microorganisms, mainly by bacteria

Goal: complete transformation down to CO_2 , H_2O , NH_4^+ , NO_3^- , N_2 , SO_2 , sulfate, sulfide, phosphate

Enzymatic reactions

Hydrolysis
N-dealkylation
Nitrile hydration
C-oxidation
N- and S-oxidation
+ other reactions

Ready biodegradability Tests, OECD 301 A to F

- Test substance + aqueous medium + activated sludge from WWTP + air, stirred at r.t. for up to 28 d
- Six test principles. Biodegradation calculated based on DOC decrease, CO_2 production or O_2 uptake
- Precise criteria → clear outcome

Zahn-Wellens/EMPA Test, OECD 302 B

- Setup as above. DOC determination in time intervals.
- Biodegradation [%] = $100 \times \text{DOC}_{\text{eliminated}} / \text{DOC}_{\text{initial}}$

DOC = Dissolved Organic Carbon

OECD = Organization for Economic
Co-operation and Development

Biodegradability vs. compound structure

Breakdown of organic matter by microorganisms, mainly by bacteria

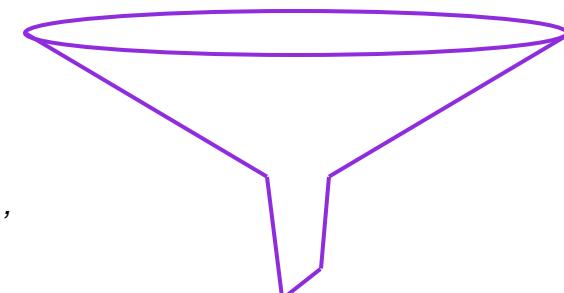
Goal: complete transformation down to CO_2 , H_2O , NH_4^+ , NO_3^- , N_2 , SO_2 , sulfate, sulfide, phosphate

	Biodegradable	Moderately degradable	Sparingly / non-degradable
Aliphatic	<i>prim- & sec-alcohols</i> aldehydes ketones carboxylic acids esters <i>prim- & sec-amines</i> amides	<i>tert-alcohols</i> nitriles alkenes nitro alkanes	ethers hydrocarbons halogen compounds <i>tert-amines</i> quaternary amines
Aromatic	anilines (no/few substituents) imidazole	anilines (substituted ones) phenols (<i>bacteriotoxic</i>) nitro aromatics	hydrocarbons biaryls halogen compounds

Biodegradability falls with increasing:

- degree of branching and chain length
- number of substituents

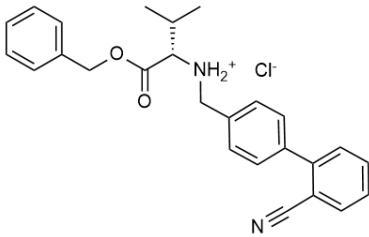
Water hazard classes - Wassergefährdungsklassen (WGK)

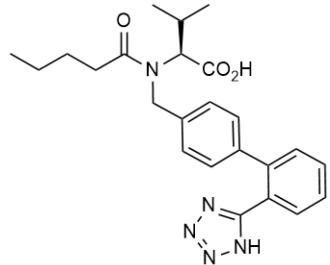


WGK

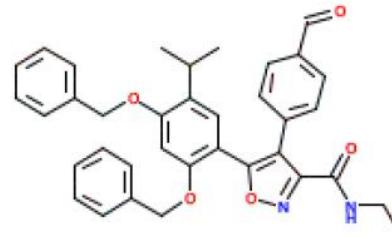
- not water endangering *nicht wassergefährdend*
- 1** slightly hazardous to water *schwach wassergefährdend*
- 2** hazardous to water *wassergefährdend*
- 3** highly hazardous to water *stark wassergefährdend*

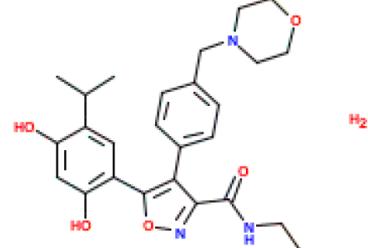
- System of the German environmental authorities (*Umweltbundesamt*)
'Verordnung über Anlagen zum Umgang mit wassergefährdenden Stoffen (AwSV)'
- List of compounds: 'Rigoletto' data base (public domain)
- Novartis Pharma Data Set (NPDS) → KSO data base


Acute toxicity in mammals
(e.g. rat LD50)
Fish, daphnia, algae toxicity
Bacteria toxicity
Biodegradability
Bioaccumulation potential

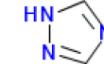

WGK

Water hazard classes - Pharma compounds

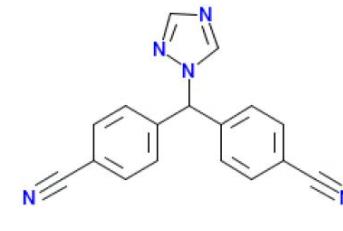

drug substances intermediates


WGK 2
Biodegradation: 10 %

WGK 1
Biodegradation: 0 %



WGK 1
Biodegradation: 3 - 12 %



WGK 3
Biodegradation: 0 %

All examples not
'readily biodegradable'

WGK 2
Biodegradation: 16 %

WGK 3
Biodegradation: 1 %

Regulatory framework

Switzerland (Basel)	China (Changshu)
Waters Protection Act (WPA) <i>Gewässerschutzgesetz (GSchG)</i> Waters protection ordinance → general and specific goals <i>Gewässerschutzverordnung (GSchV)</i>	Law of the People's Republic of China on Prevention and Control of Water Pollution
Novartis Corporate HSE GL 7 'Waste Management', GL 15 'Pharmaceuticals in the Environment', GN 15.3	
Disposal permission of local authorities (BS / BL)	
HSE CH Guidance Note 004.3.1 'Wastewater Disposal and Water Protection Installations' Waste water management system (surveillance, assessment, inventory, reporting)	SOP-7017963 'Environmental management' - SNPT emission/discharge limits for waste water - Wastewater management procedures
Waste water assessment → Waste water card (AWK) <i>Abwasserkarte (AWK)</i> DERA Info File 3020 'Poorly degradable substances'	Wastewater Register WP-7005368 Waste Water File FRM-7026109 → WW assessment Process waste water classification tree

Information resources

Biodegradability test methods

Biodegradability of compounds

Water hazard class (WGK)

$\log P_{ow}$

Solubility in water

- Novartis KSO data base, MSDS, ECHA website
- Novartis KSO (NPDS, section 'Regulatory')
- Supplier MSDS
- Rigoletto data base (also in English)
<https://webrigoletto.uba.de/rigoletto/public/welcome.do>
- GESTIS data base (also in English):
<http://www.dguv.de/ifa/gestis/gestis-stoffdatenbank/index.jsp>
(section 'Regulations' / 'Vorschriften')
- Novartis KSO, GESTIS data base, MSDS, ECHA website, solvent selection guides

Summary and Conclusions

Chemists and engineers have enormous control over manufacturing processes by selection of synthetic routes.

The Design Principles of Sustainable Green Chemistry are guidelines. Use of metrics is imperative!

The incorporation of catalysis, biocatalysis, continuous flow, nanofiltration, etc. can dramatically improve processes in terms of waste generation.

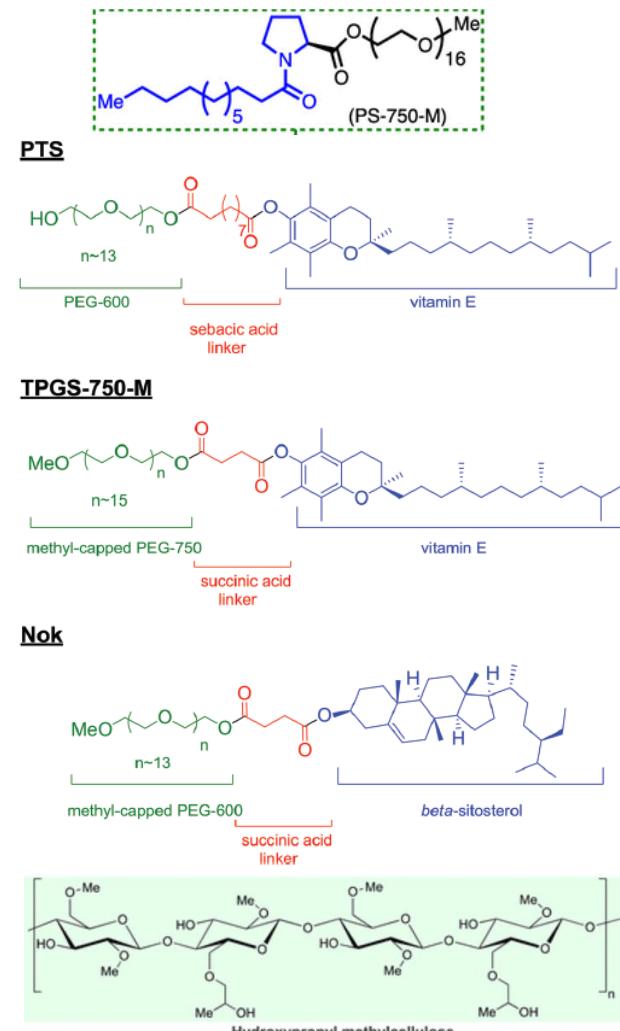
Solvent and reagent selection guides, coupled with metrics and life cycle analysis, can help make routes more sustainable.

Green chemistry is a triple win: cost-effective, better for the environment, and safer for the employees.

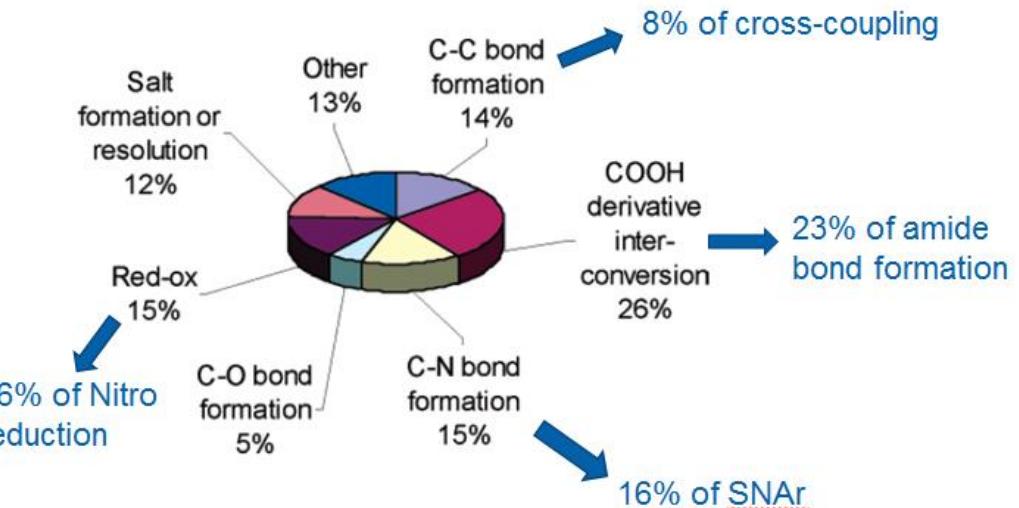
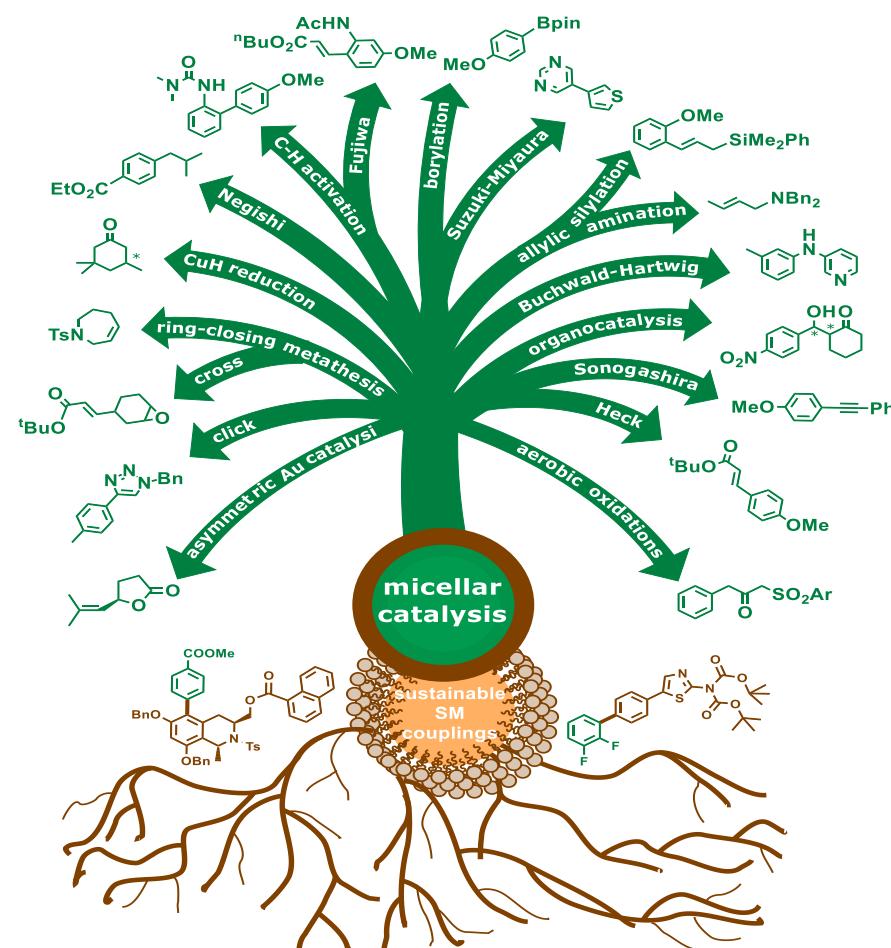
Take home messages

Be curious about environmental and physical properties of the compounds

All input materials and their resulting by-products determine the quality of the waste water

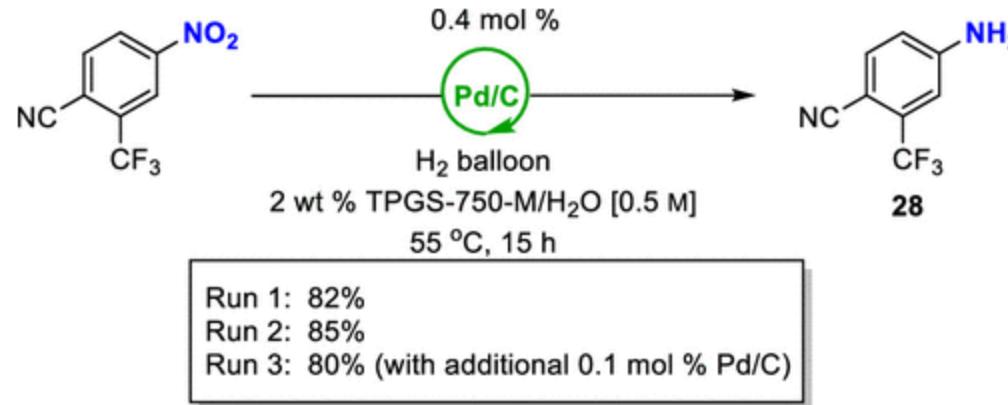

Early collection of information will enable data-driven decisions

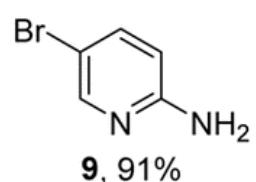
Strive for simplicity and robustness if a pre-treatment is needed



IV. Impact of technologies

Use of surfactants to enable chemistry in water

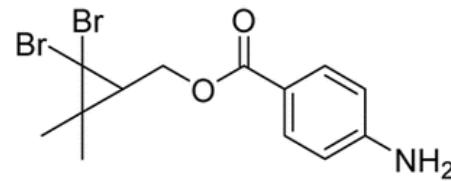
- Surfactants are known for their remarkable physical properties as solubilizers.
- Use of versatile nonionic surfactants – Lipshutz and Handa, Abbvie, Takeda, Novartis
- Development of a variety of transformations mediated in water
- No safety or environmental baggage – “benign-by-design”


Surfactant applied to a broad range of transformations



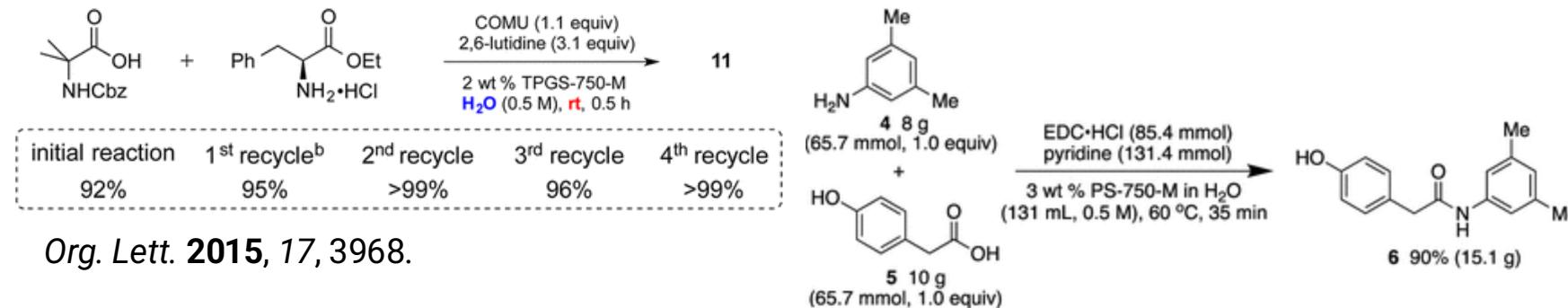
The Roundtable recently triggered a new collaborative working group of chemistry in water. Roundtable member companies meet to share best practices and advance the reaction, work-up, and isolation technology required for running water-based synthetic organic reactions.

Nitro Reduction


Cheap and very efficient options

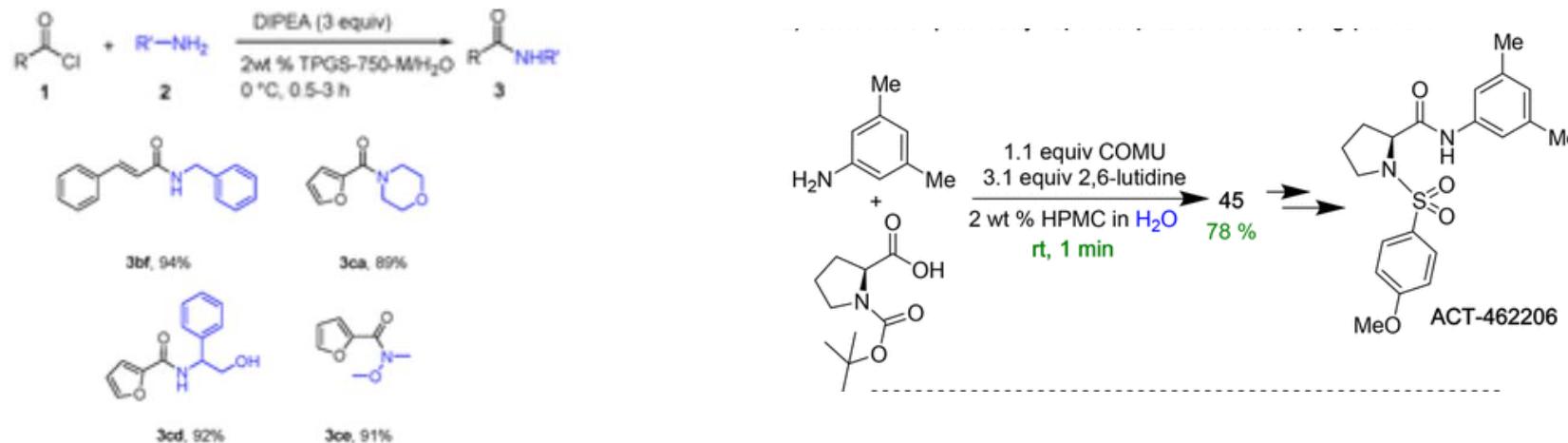
Org. Lett. **2021**, *23*, 8114.

9, 91%



10, 88%

Org. Proc. Res. Dev. **2017**, *21*, 247.

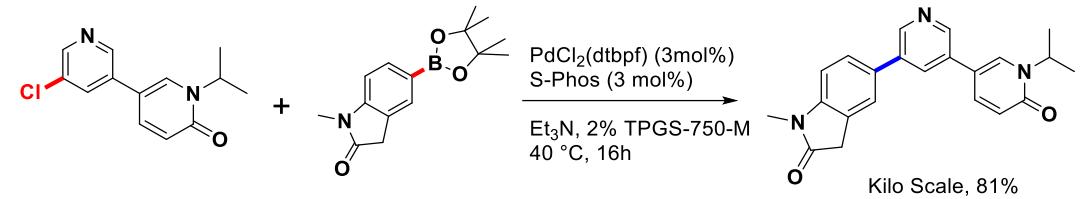

Amidation

A toolbox of options

Org. Lett. 2015, 17, 3968.

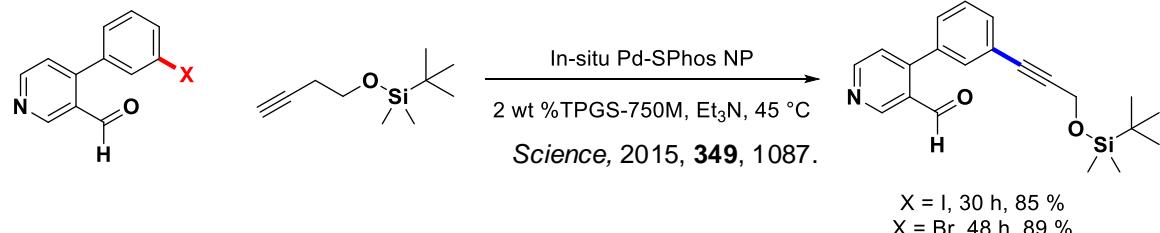
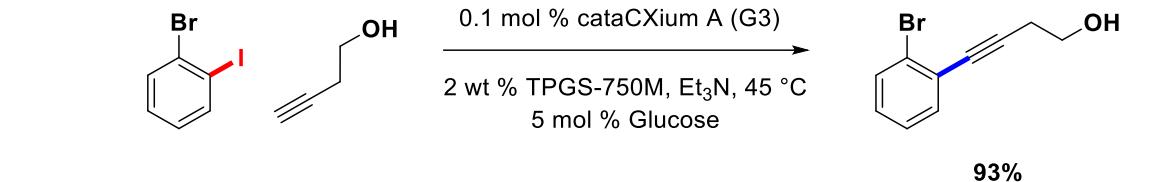
Org. Process Res. Dev. 2021, 25, 1960.

Org. Process Res. Dev. 2020, 24, 1543.

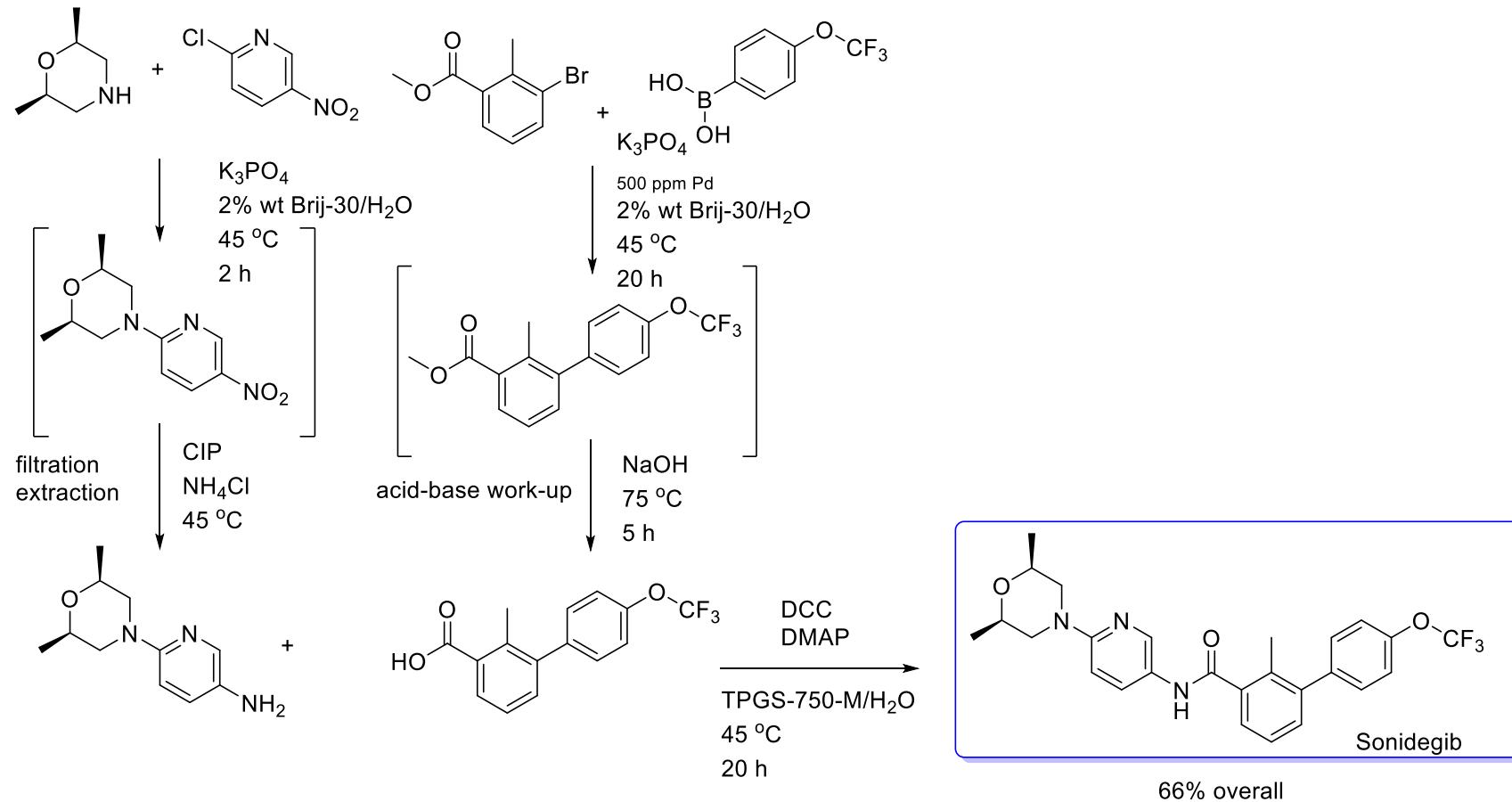

ACS Sustainable Chem. Eng. 2020, 8, 12612.

Cross-Couplings

Well established transformation

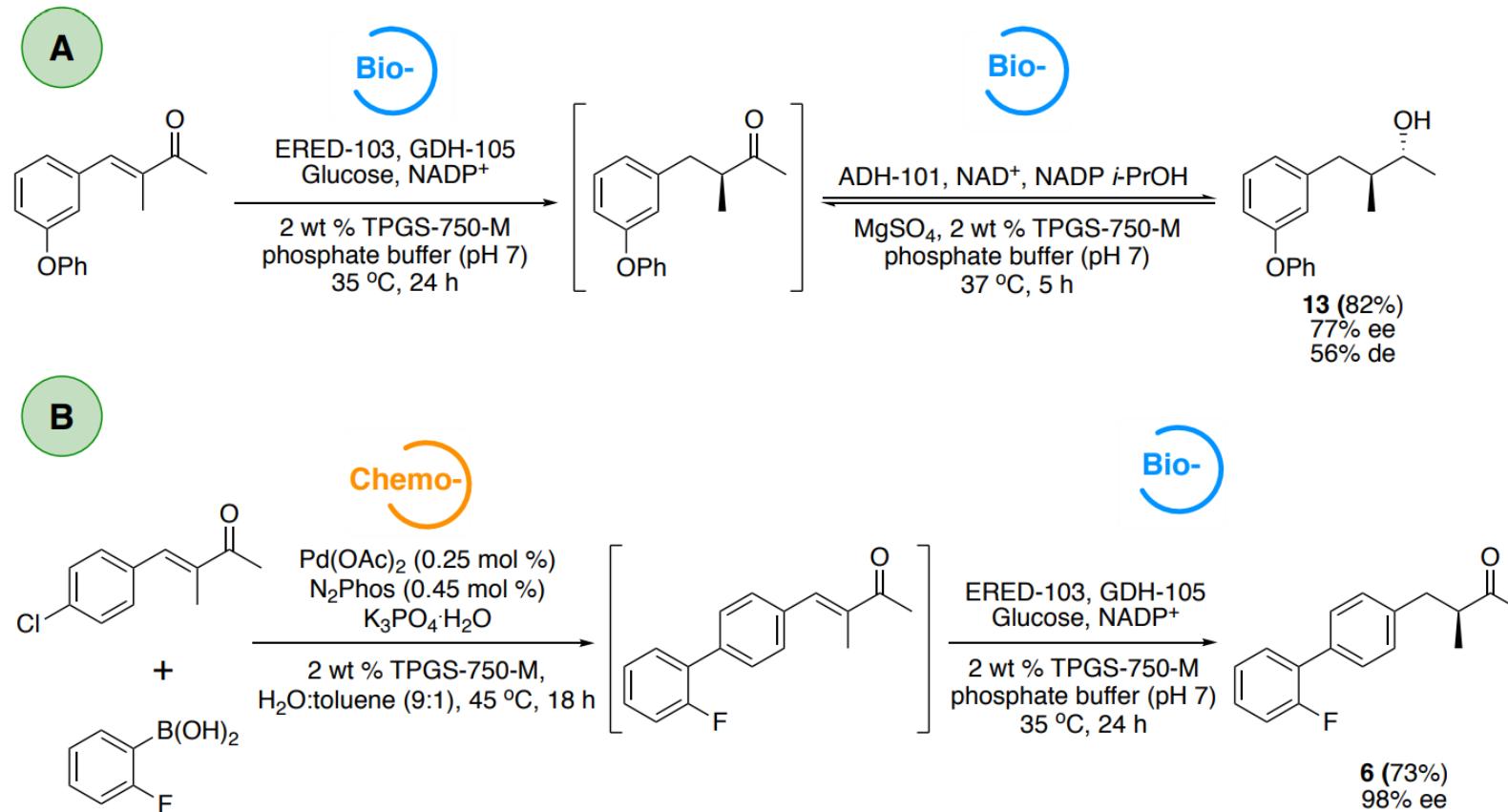


- **Suzuki-Miyaura:**

- Applied on Kg-Scale
- Robust and efficient
- Mild reaction conditions avoid degradation
- Improved stoichiometry

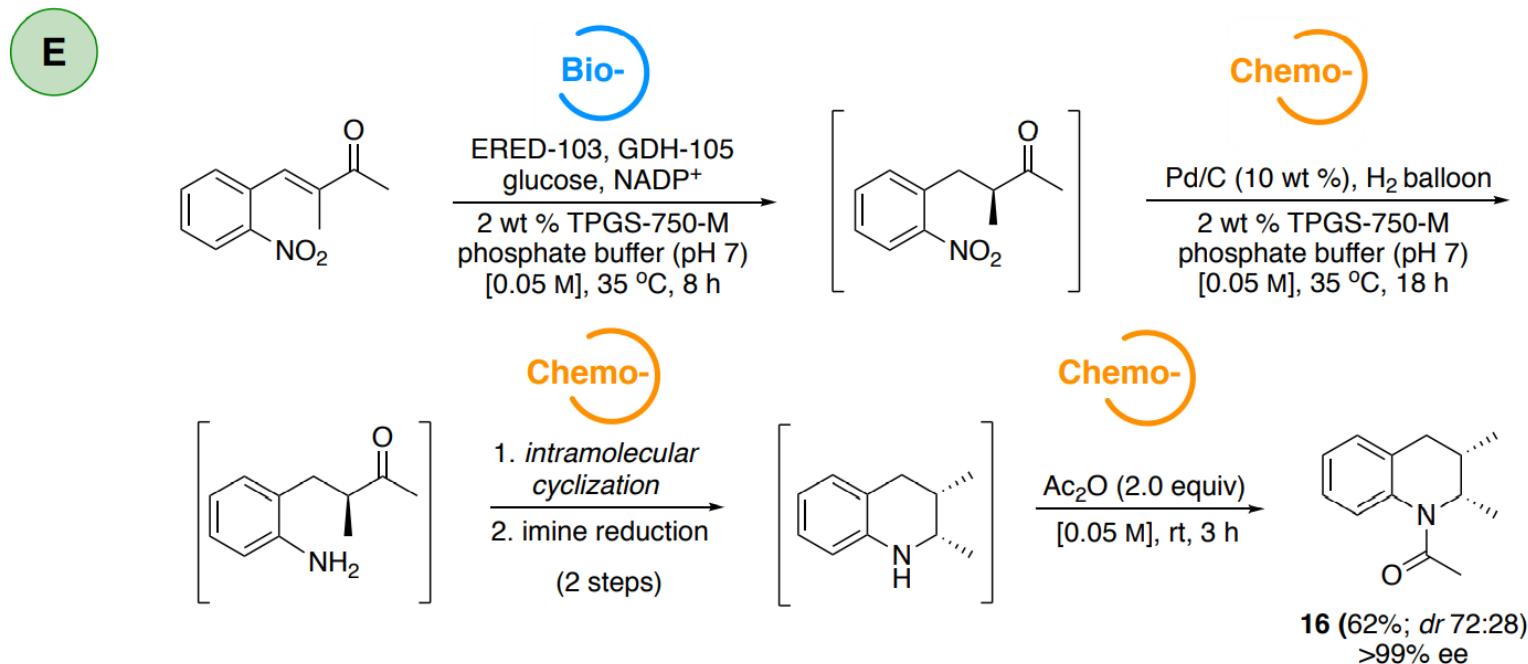

- **Sonogashira:**

- Copper free reaction
- Very low catalyst loading
- Fe-NPs with ppm level of Pd
- Mild reaction conditions

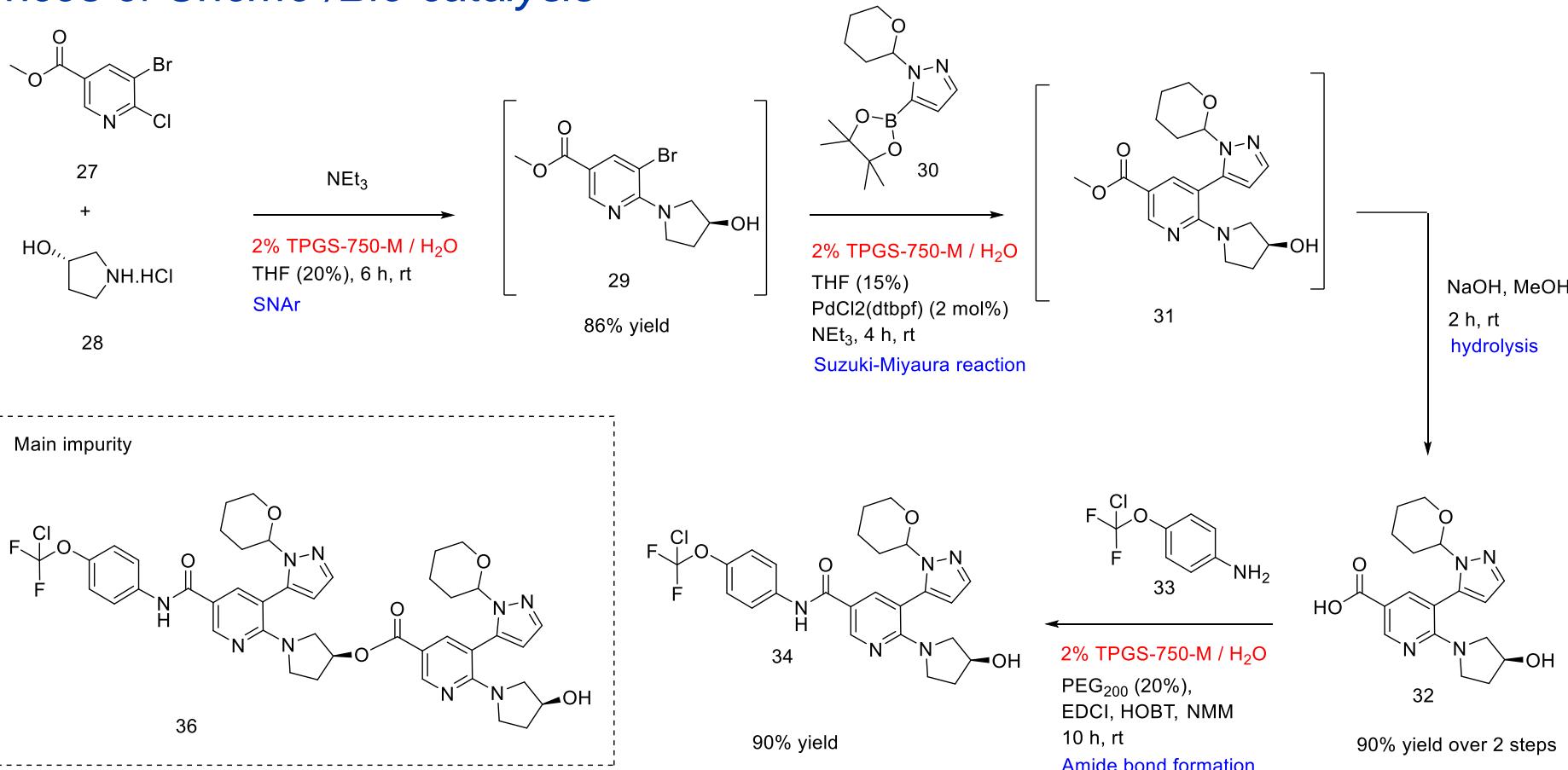
Tandem reactions


All transformations run in 2% TPGS-750-M in water

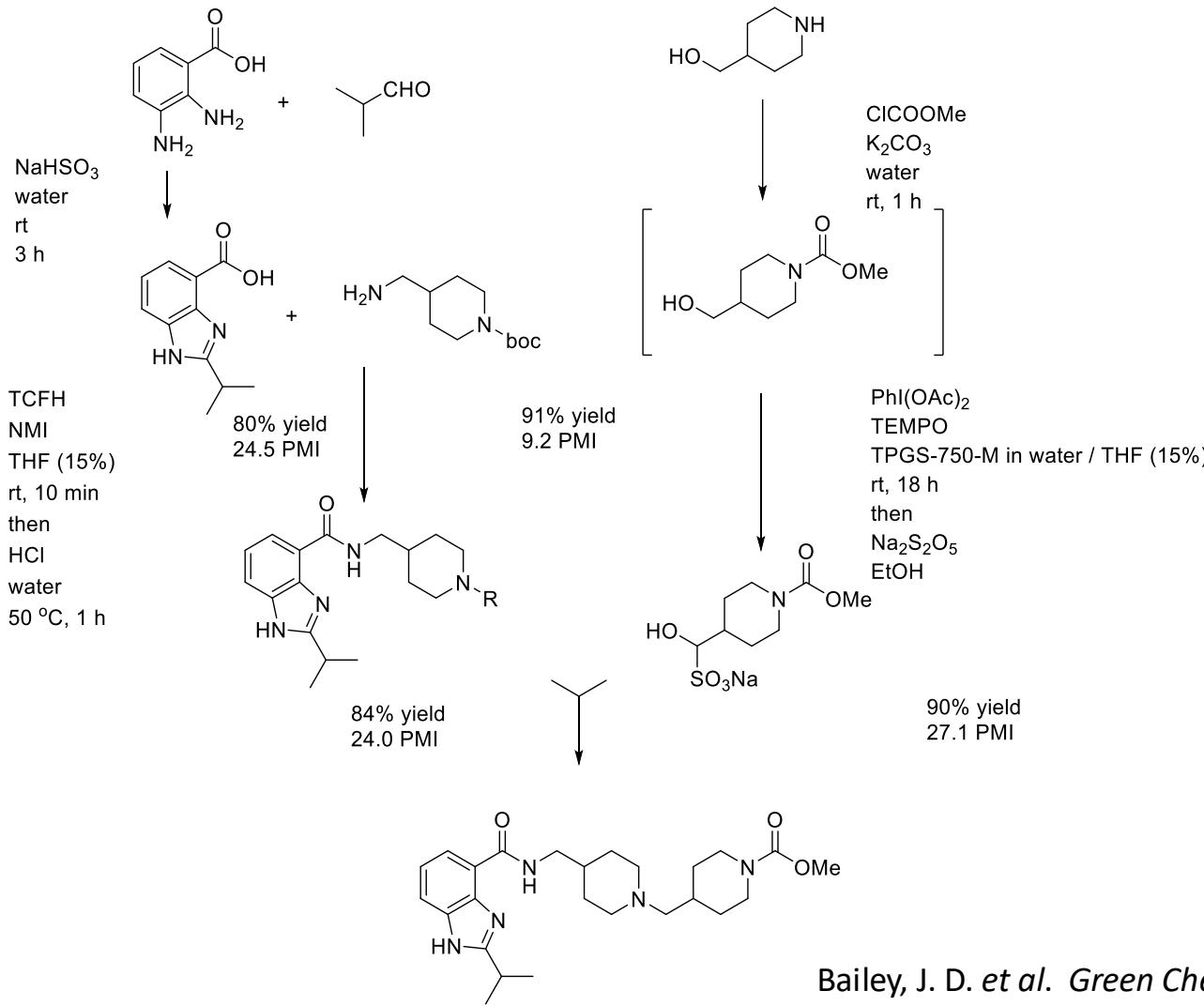
Chem. Sci. **2019**, *10*, 3481–3485.


Tandem reactions

Sequences of Chemo-/Bio-catalysis

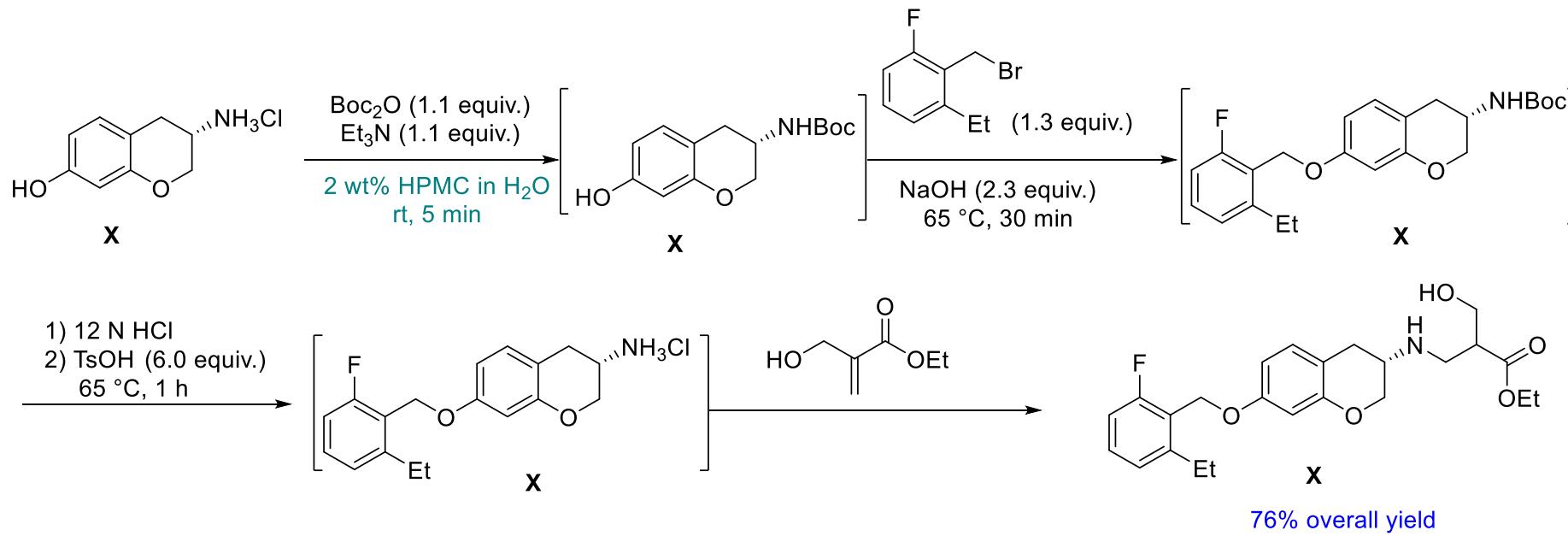

Tandem reactions

Sequences of Chemo-/Bio-catalysis



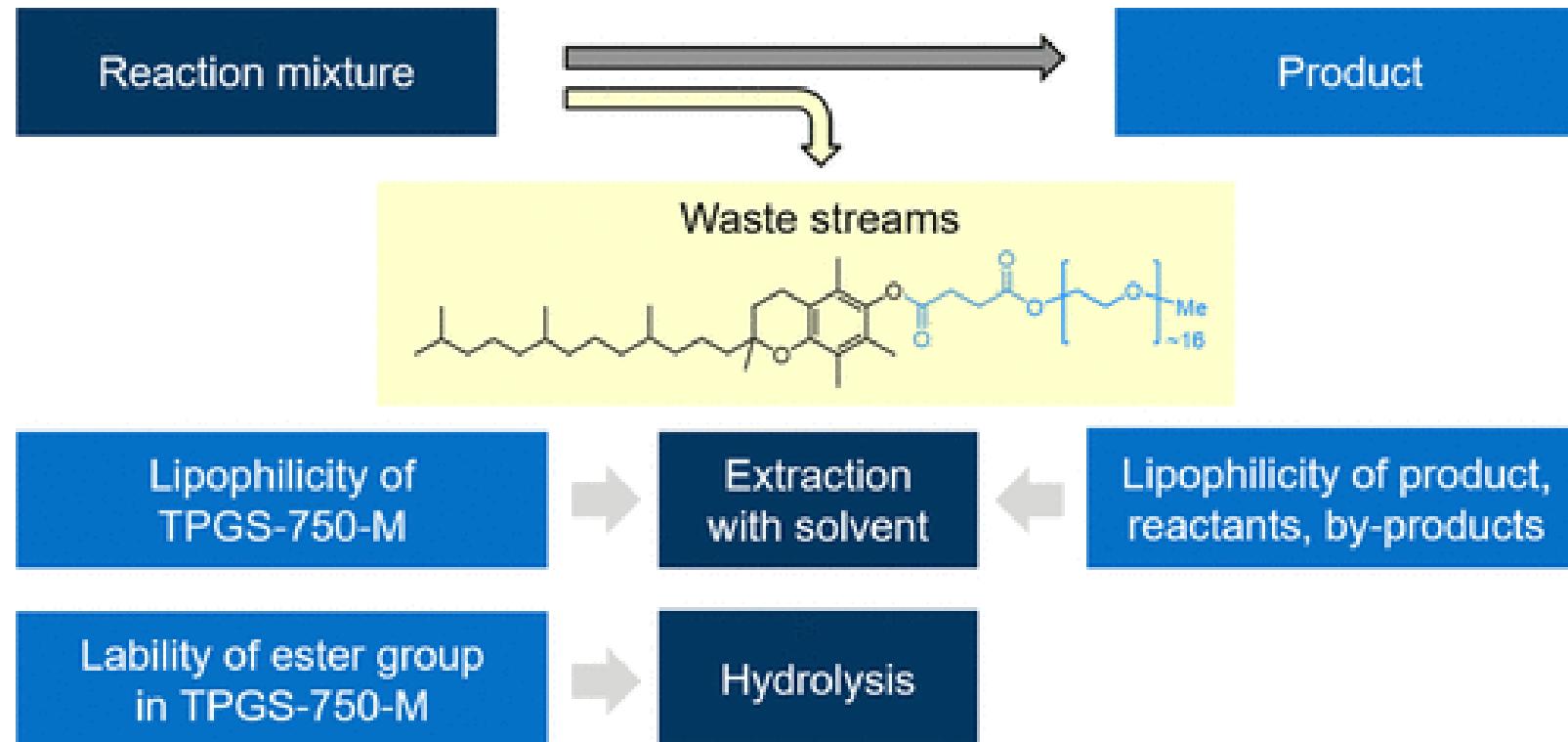
Tandem reactions

Sequences of Chemo-/Bio-catalysis



Tandem reactions

Bailey, J. D. *et al.* *Green Chem.* **2021**, 23, 788–795.


Tandem reactions

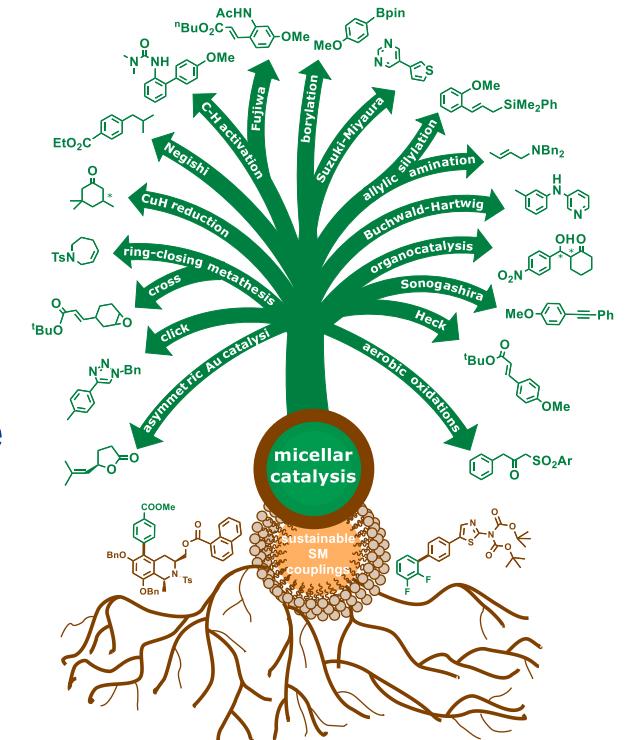
Braje, W. M. & Handa, S. *ACS Sustainable Chem. Eng.* **2020**, *8*, 12612–12617.

Waste water concept

Strategies to Tackle the Waste Water from α -Tocopherol-Derived Surfactant Chemistry

Org. Proc. Res. Dev. 2021, 25, 900.

Opportunities


Some biases and unknown facts

- Chemistry with surfactants in water requires **as much or even less water than traditional transformations** due to high concentration
- **Contamination of water waste equivalent** whether traditional or surfactant in water process is being used
- Standard process in surfactant water can be as simple as running the reaction, filtering and drying
- **No capital investment** required, no special equipment !
- Technology mostly driven by physical properties of various components of the system Limited understanding of mechanisms and appreciation

Take home message

A powerful alternative to classical polar aprotic solvents still at its infancy

- Sustainable alternative for reprotoxic polar aprotic solvents demonstrated with significant advantages
- Ever-growing toolbox and understanding
- Next generation of reagents/catalytic systems tailor-made to the medium
- New rules remain to be discovered and exploited

Summary and Conclusions

Chemists and engineers have enormous control over manufacturing processes by selection of synthetic routes.

The Design Principles of Sustainable Green Chemistry are guidelines. Use of metrics is imperative!

The incorporation of catalysis, biocatalysis, continuous flow, nanofiltration, etc. can dramatically improve processes in terms of waste generation.

Solvent and reagent selection guides, coupled with metrics and life cycle analysis, can help make routes more sustainable.

Green chemistry is a triple win: cost-effective, better for the environment, and safer for the employees.

Some important tools

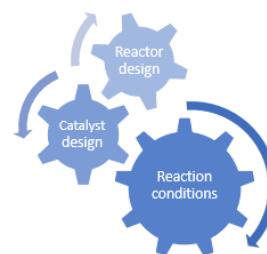
- Proper design of syntheses and processes is the essence of sustainability !

- Strong correlation cost and environmental footprint

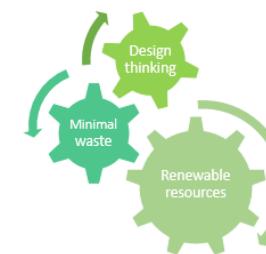
- Solvent selection


<http://learning.chem21.eu/>

- Considers safety, health and environmental impact of solvents
 - Make the right solvent choice – there are alternatives !


Reagents guide

<https://reagents.acsgcipr.org/>


- The greenest conditions for common transformations (*Green Chem.* 2013, 15, 1542-1549)

Reduced global warming potential

Sustainably improved economy

Green chemistry

Thanks to the all, questions?

xxx